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The similarity of the coherent structures (streaks and hairpin vortices) naturally
occurring in different fully developed bounded turbulent shear flows as well as
in transitional flows suggests the existence of a basic mechanism responsible for
the formation of these structures, under various base flow conditions. The common
elements for all such flows are the shear of the base flow and the presence of a localized
vortical disturbance. The objective of the present numerical study is to examine the
capability of a simple model of interaction, between a localized vortical disturbance
and laminar uniform unbounded shear flow, to reproduce the generation mechanism
and characteristics of the coherent structures that naturally occur in turbulent
bounded shear flows. The effects of the disturbance ‘localized character’ in the stream-
wise and spanwise directions as well as its initial orientation relative to the base flow
are investigated by using several geometries of the initial disturbance. The results
demonstrate that a small-amplitude initial disturbance (linear case) eventually evolves
into a streaky structure independent of its initial geometry and orientation, whereas,
a large-amplitude disturbance (strongly nonlinear case) evolves into a hairpin vortex
(or a packet of hairpin vortices) independent of its geometry over a wide range of
the initial disturbance orientations. The main nonlinear effects are: (i) self-induced
motion, which results in the movement of the vortical structure relative to the base
flow and the destruction of its streamwise symmetry, and (ii) the alignment of
the vortical structure with the vorticity lines. This is unlike the linear case, where
there is a strong deviation of the vorticity vector from the direction of the vortical
structure. Qualitatively, the disturbance evolution is sufficiently independent of its
initial geometry, whereas the associated quantitative characteristics, i.e. inclination
angle, centre and strength (which is governed by the transient growth mechanism),
strongly depend on the disturbance geometry. The Reynolds number is found to
have a negligible effect on the kinematics of the vortical structure, but does have a
significant effect on its transient growth. Finally, the formation of the asymmetric
hairpin vortex, due to minor spanwise asymmetries of the initial disturbance, is
demonstrated.
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1. Introduction
1.1. Coherent structures

Wall-bounded turbulent shear flows are characterized by unsteady, seemingly chaotic
motion. In fact, however, the motion is not random and it has been observed to be
governed by well-organized vortical structures. These turbulent shear flows are known
to consist mainly of two different kinds of coherent vortical structure: (i) counter-
rotating streamwise vortices, which lead to the formation of low- and high-speed
velocity regions (streaks), observed in the near wall region, and (ii) hairpin-shaped
vortices extended across the boundary layer. The two kinds of coherent structure were
first identified experimentally by Kline et al. (1967). Following their pioneering work,
these vortical structures were reported by a growing list of workers who suggested
them as basic flow elements of wall-bounded turbulent shear flows. The main experi-
mental and numerical findings regarding the coherent structures are discussed and
summarized in Robinson (1991) and Smith & Walker (1995) and also in § 1 of
Schoppa & Hussain (2002).

One of the remarkable features of these coherent structures, is that their charac-
teristic length scales (expressed in wall units: y+ = yu∗/ν, u∗ =

√
τw/ρ) remain almost

unchangeable for various kinds of shear flow and over a significant range of Reynolds
numbers. In the above expressions, y is a dimensional length, ν is the kinematic
viscosity, ρ is the fluid density and τw is the wall shear stress. The characteristic
length of the streamwise vortices and the associated low-speed regions (streaks), has
been found to be of the order of 600 to 1000 wall units, the diameter of the stream-
wise vortices is typically between 10 and 40 wall units and the mean spanwise streak
spacing is about 100 wall units. (Kline et al. 1967; Kim, Kline & Reynolds 1971;
Smith & Metzler 1983; Robinson 1991).

The hairpin-type vortical structures consist of a pair of counter-rotating legs joined
by a relatively short ‘head’ segment. These vortices were found to be inclined at
about 45◦ to the base flow direction, and remain identifiable even at high Reynolds
numbers of the order of Reθ

∼= 104, where θ is the momentum thickness (Head &
Bandyopadhyay 1981). The spanwise separation of the two counter-rotating legs is
about 50–60 wall units according to Wallace (1985), and does not exceed 100 according
to other investigators (a complete table of the reported coherent structures charac-
teristics can be found in Panton 1997). The convective velocity of the hairpin’s head
was measured by several investigators and appeared to be lower than the free-stream
velocity even when the head was outside the boundary layer. The reported velocities
are within the range of 0.4U∞ − 0.8U∞ (Panton 1997). Adrian, Meinhart & Tomkins
(2000) using the particle image velocimetry (PIV) technique, indicated the existence
of packets of hairpin vortices in turbulent boundary layer.

The evolutionary dynamics as well as the characteristic length scales have been
found to be similar in both fully turbulent and transitional shear flows. Therefore,
in order to understand the underlying physics of coherent vortical structures in
wall-bounded turbulent shear flows, several authors have studied the evolution of
similar structures artificially generated in sub-critical wall-bounded laminar shear
flows. The advantage of this approach is that the flow is ‘quiet’ and therefore the
vortical structure can be easily identified and followed. However, in this approach the
influence of the turbulent Reynolds stress, associated with other vortical structures,
is ignored.

Blackwelder (1983) compared the constituent elements of counter-rotating stream-
wise vortices for both transitional and turbulent boundary layers and suggested that
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the dynamics of the vortices are similar, and their dimensions are comparable when
scaled with viscous parameters, ν and u∗. In a subsequent work, Swearingen &
Blackwelder (1987) experimentally studied the evolution of these vortices, generated
via a Görtler instability mechanism along a concave wall. The authors reported that
the spanwise wavelength and streamwise extent of the vortices compare favourably
with those observed in transitional and turbulent flat-plate boundary layers when
expressed in wall units.

Hairpin vortices (or horseshoe vortices) were also artificially generated in a laminar
boundary layer. Comparison of the artificially generated hairpin vortices with the
vortical structures observed in turbulent boundary layers showed striking similarities
with regard to the details of the vortical shapes and their inclination angles to the
main flow direction. Using a suction technique, hairpin vortices were generated in a
laminar boundary layer by Acarlar & Smith (1987b) and in a rotating axisymmetric
Couette flow by Levinski & Cohen (1995) and by Malkiel, Levinski & Cohen (1999).
Haidari & Smith (1994) used a pulsed injection from a streamwise slot to generate
hairpin vortices in a sub-critical laminar boundary layer, while Svizher & Cohen
(2002) used a continuous injection to generate hairpin vortices in a sub-critical plane
Poiseuille flow. Hairpin vortices were also generated behind a hemispherical bump by
Acarlar & Smith (1987a). Some of the experimental results were confirmed and exten-
ded by numerical simulations. Numerical studies have been performed by Singer &
Joslin (1994) for the experiments of Haidari & Smith (1994), by Rosenfeld, Cohen &
Levinski (1999) for the experiments of Malkiel et al. (1999) and more recently, by
Skote, Haritonidis & Henningson (2002) for the experiments of Acarlar & Smith
(1987b).

1.2. Regeneration mechanisms of turbulent structures

One of the main objectives in the studies of coherent structures in fully developed
turbulent flows, is to understand their self-generation ability. A variety of mechanisms
describing the regeneration cycle has been proposed, and most of them can be roughly
divided into two main categories (see Schoppa & Hussain 2002): parent–offspring
mechanisms (i.e. the structure produces self-similar structures), or instability-based
mechanisms (i.e. the structure produces a new class of structures).

Zhou, Adrian & Balachandar (1996) and Zhou et al. (1999) proposed an offspring
regeneration mechanism in which the key element is a single strong hairpin vortex.
In these works the evolution of a hairpin-like vortex structure (extracted from the
low-Reynolds-number turbulent channel flow database (Kim, Moin & Moser 1987))
imposed on a mean turbulent channel flow was investigated using direct numerical
simulation of the Navier–Stokes equations. They demonstrated that initial vortices,
having vorticity that is weak relative to the mean vorticity, evolve gradually into
Ω-shaped vortices which persist for long times and decay slowly. When the amplitude
of the initial vortex exceeds a certain threshold relative to the mean flow, new hairpin
vortices are generated upstream and downstream of the primary vortex, forming a
coherent packet of hairpins. In this mechanism, the velocity field, induced by the
parent vortex, generates intense local shear layers, mainly composed of spanwise
vorticity. These shear layers roll-up into spanwise vortices which connect with the
existing quasi-streamwise legs, and are stretched by the mean shear into offspring
hairpin vortices, detached from the primary hairpin vortex.

Another offspring mechanism (implying that there is no coupling between the
inner and outer layer dynamics) was suggested by Brooke & Hanratty (1993), who
studied the spatio-temporal velocity field from DNS data. In this mechanism, an
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opposite-signed offspring vortex forms underneath a parent vortex, whose downstream
end has lifted from the wall. Similar findings were obtained by Bernard, Thomas &
Handler (1993), who further noted that new vortices mainly formed from strong
vertical vorticity component.

A detailed review of the instability-based mechanisms can be found in § 1 of
Schoppa & Hussain (2002). Here the discussion is restricted to the ‘streak-instability’
based mechanisms. Robinson (1991) studied the evolution of instantaneous structures
identified from DNS data and proposed, that low-speed streaks, generated by the
streamwise vortices, contain a locally unstable U (y) shear, which results in the
generation of new spanwise vortices. One side of this spanwise vortex is stretched into
a new quasi-streamwise vortex, which again generates a new streak closing the cycle.
This U (y) instability mechanism conceptually corresponds to varicose modes, which
exhibit a hairpin-type perturbation symmetry.

Hamilton, Kim & Waleffe (1995) applied the ‘minimal flow unit’ concept of
Jimenez & Moin (1991) to plane Couette flow to study the streak instability concept.
Accordingly, the spanwise width of the computational domain corresponded closely to
the typical observed spanwise spacing of near-wall streaks, and its further decreasing
resulted in laminarization of the flow. They observed a well-organized process of
near-wall structure regeneration, composed of three steps: formation of streaks by
streamwise vortices; breakdown of streaks; and formation of new streamwise vortices.
The regeneration cycle in turbulent channels flows at moderate Reynolds numbers was
studied by Jimenez & Pinelli (1999) using direct numerical simulations. It was found
that there is no coupling between the inner and outer regions, and a regeneration cycle
in the near-wall region is similar to that of Hamilton et al. (1995). Based on the fact
that the regeneration cycle resided above the viscous sub-layer, they suggested that a
similar mechanism, may be active in other shear flows, particularly in the logarithmic
layer. They also reported that the effect of the secondary vorticity generated at the
wall, on the regeneration cycle is minor. Consequently, they suggested that the role
of the wall is mainly to maintain the base shear.

Schoppa & Hussain (2002) proposed that the generation of streamwise vortices is
governed by streak transient growth mechanism rather then by normal-mode instabi-
lity. Their analysis of streaks extracted from fully developed near-wall turbulence
showed that only about 20 % of the streaks exceed the strength threshold for develop-
ing linearly unstable sinuous modes. Therefore, they proposed that streamwise vortices
are generated from more numerous streaks which are stable to normal modes.

1.3. Transitional flows

The similarity between vortical structures existing in fully developed turbulent shear
flow and transitional flow suggests the similarity of the mechanisms responsible for
their formation and subsequent dynamics. Therefore, certain aspects of laminar–
turbulent transition are closely connected to the study of the dynamics of fully
developed turbulent shear flows.

Inviscid theory (mainly due to Rayleigh 1880) predicts that velocity profiles with
an inflection point may have exponentially growing eigenmodes. When the Reynolds
number is finite, an additional class of eigenmodes (commonly referred to as Tollmien–
Schlichting waves) may grow exponentially owing to viscous effects. If exponentially
growing solutions do not exist, the flow is considered to be stable according to
the linear stability theory (e.g. plane Couette flow, pipe Poiseuille flow). However,
experiments have shown that transition may occur for Reynolds numbers as low as
280 for plane Couette flow (see e.g. Leutheusser & Chu 1971; Tillmark & Alfredsson
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1992; Dauchot & Daviaud 1995) and 1760 for pipe Poiseuille flow (see e.g. Reynolds
1883; Leite 1959; Wygnanski & Champagne 1973; Darbyshire & Mullin 1995).

A possible non-modal growth mechanism was first proposed by Ellingsen &
Palm (1975). They introduced an infinitesimal streamwise independent disturbance
having a spanwise structure in a shear layer. They showed that for the inviscid
flow, the disturbance streamwise velocity component can increase linearly with time,
generating low- and high-speed streaks. As was shown by Landahl (1980), this growth
is associated with the lift-up of fluid particles which retain their horizontal momentum
as they move in the direction of the shear, causing perturbation in the streamwise
velocity component. This inviscid growth together with viscous damping constitutes
what is called a transient growth mechanism. Much work has been done on the lift-up
and transient growth mechanisms (Hultgren & Gustavsson 1981; Boberg & Brosa
1988; Gustavsson 1991; Butler & Farrell 1992; Henningson, Lundbladh & Johansson
1993; Reddy & Henningson 1993; Ben-Dov, Levinski & Cohen 2003), demonstrating
a considerable linear amplification of a three-dimensional disturbance before it
decays owing to viscous effects. Streamwise vortices were found to lead to maximum
spatial transient growth in a non-parallel flat-plate boundary-layer flow (Andersson,
Berggren & Henningson 1999; Luchini 2000). If the amplitude of the streaks (associa-
ted with these vortices) reaches a sufficiently large value, secondary instabilities may
occur which lead to early breakdown and transition (e.g. Elofsson & Alfredsson 1998,
Andersson et al. 2001; Asai, Minagawa & Nishioka 2002).

The transient growth mechanism is also relevant for disturbances which are localized
in the streamwise and spanwise directions, although the associated growth rate
is slower than that of the streamwise independent disturbances (for comparison
see the introduction of Bech, Henningson & Henkes 1998). The evolution of such
disturbances in a laminar boundary layer over a flat plate was studied numerically
and experimentally by Breuer & Haritonidis (1990) and Breuer & Landahl (1990) for
small- and moderate-amplitude disturbances, respectively. Henningson et al. (1993)
and Bech et al. (1998) used direct numerical simulations to study the evolution of loca-
lized disturbances in plane Poiseuille flow and in adverse and zero-pressure-gradient
boundary layers, respectively. According to these studies, the disturbance may be
viewed as consisting of two parts: a dispersive part (represented by the solutions
to the Rayleigh equation) and a transient part travelling at the local mean velocity.
The balance between these two parts is governed by the instability characteristics
of the mean velocity profile. Furthermore, small-amplitude disturbances evolved into
low- and high-speed streaks similar to those observed in turbulent flows, whereas
moderate-amplitude disturbances developed into vortical structures resembling the
three-dimensional lambda vortices which were observed in previous studies.

In all of the above studies, the Reynolds number was based on the parameters of
the base flow, whereas the parameters of the initial disturbance were not taken into
account. Furthermore, the characteristic length scales of the initial disturbances were
at least comparable with that of the base flow (e.g. the boundary-layer thickness).
The disturbance initial amplitude was defined as the ratio between the initial normal
velocity component and the characteristic velocity of the base flow.

Levinski & Cohen (1995) proposed a general model characterizing the evolution of
a localized (in all three dimensions) disturbance, the dimensions of which are much
smaller than the characteristic length scale of the external shear flow. According to
their model, a simple feedback mechanism takes place: the lift-up of the disturbance
in the vertical direction stretches the external spanwise vorticity field and generates a
disturbed vorticity component in the vertical direction. The direct effect of the external
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shear flow is to rotate the disturbed vortex back towards the wall and thereby to
amplify the streamwise vorticity component. The new streamwise vorticity component
induces an additional vertical velocity which further enhances the lift-up effect and
closes the feedback loop.

Finally, Shukhman & Levinski (2003) obtained an analytic solution of the linearized
vorticity equation for the evolution of such a localized small-amplitude ‘Gaussian
vortex’ (spherical vortex ring with Gaussian vorticity distribution) in an unbounded
uniform shear flow.

1.4. Present research

The similarity of the coherent structures (streaks and hairpin vortices) naturally
occurring in different fully developed bounded turbulent shear flows as well as in
transitional flows suggests the existence of a basic mechanism responsible for the
formation of these structures, under various base flow conditions. The common
elements for all such flows are the shear of the base flow and the presence of a
localized vortical disturbance. The objective of the present numerical study is to
examine the capability of a simple model of interaction, between a localized vortical
disturbance and laminar uniform unbounded shear flow, to reproduce the generation
mechanism and characteristics of the coherent structures that naturally occur in
turbulent bounded shear flows.

The term ‘localized disturbance’ referred to disturbances, the dimensions of which
are much smaller than a typical scale representing the velocity gradient of the external
flow. The role of the wall in this model is only to maintain the shear of the base flow,
and to generate the initial disturbance, whereas its effect on the disturbance evolution
is required to be negligible (Levinski & Cohen 1995). Obviously, the main advantages
of this model are its relative simplicity and generality. As such, it is relevant to various
fields: structure of turbulent boundary layers, by-pass transition to turbulence, and
vortex dynamics.

The rest of the paper is organized as follows. The problem statement, including
the definition of the initial disturbance, description of the governing parameters,
definition of the vortical structure characteristics and the computational procedure, is
given in § 2. The results are presented in § 3, which is subdivided into § § 3.1–3.3, each
describing the disturbance evolution having a different initial geometry. Section 3.1,
is further subdivided into § § 3.1.1–3.1.3 in which various effects of the governing
parameters are addressed. The main results and related issues are discussed in § 4 and
the main conclusions are given in § 5.

2. Problem statement
2.1. The initial disturbance

In general, any localized vortex (in all three dimensions) with a divergent free vorticity
field can be used as an initial disturbance. In this study, three different geometrical
shapes of the initial disturbance (all of them having a Gaussian vorticity magnitude
distribution) are considered. The first one is a ‘spherical’ vortex ring with a Gaussian
vorticity distribution, referred to as a ‘Gaussian vortex’, that is defined by the following
equation:

ω = − p × ∇F, F =
(
π1/2δ

)−3
exp

(
−r2

s

/
δ2

)
, (2.1)

where ω is the vorticity vector, p is a vector defining its space orientation, rs is a
spherical radial coordinate, and δ is a representative length scale of the disturbance
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(the disturbance maximum vorticity magnitude is obtained at rs = δ/
√

2). The function
F in (2.1) is normalized such that its volume integral is equal to 1, (

∫
V

F dV =1). In
this case the vector p is the fluid impulse of the initial vortical disturbance, defined
as (e.g. Batchelor 1967):

p = 1
2

∫
V

r × ω dV, (2.2)

where r is the position vector. This disturbance, having a single length scale, serves as
an example of a localized region of concentrated vorticity, with vorticity lines forming
circles in a plane perpendicular to the direction of the fluid impulse vector p.

The second shape of the initial disturbance is that of a horizontal streamwise
elongated Gaussian vortex. It is defined by two characteristic length scales, allowing
us to examine the effect of the disturbance streamwise elongation. Its vorticity field
is also defined by (2.1), except for the spherical radial coordinate rs which is replaced
by re, the expression for which is given by:

re =
√

x̄2 + y2 + z2, x̄ =




x − L; |x| > L, x > 0,

x + L; |x| > L, x < 0,

0; |x| < L,

(2.3)

where x, y and z are the streamwise, normal and spanwise directions, respectively, and
L is a second characteristic length scale associated with the streamwise elongation of
the disturbance. The disturbance initial elongation is determined by the length scales
ratio L/δ. When this ratio is equal to zero, the initial disturbance reduces to that of
the Gaussian vortex (equation (2.1)), whereas for a sufficiently large ratio, it can be
approximately considered as a ‘streamwise independent’ disturbance.

The third shape of the initial disturbance is a toroidal vortex, also having two
characteristic length scales. For a horizontal (x, z-plane) torus the vorticity field is
given by:

ω =




z

0
−x


 A exp(−y2/δ2) exp(−(r − ro)

2/δ2), (2.4)

where A is a positive constant defining the strength of the disturbance, r =
√

x2 + z2

is a radial cylindrical coordinate and ro and δ are two characteristic length scales
associated with the radius and the thickness of the torus, respectively. This initial
disturbance has a vorticity distribution similar to that of the Gaussian vortex (for
the horizontal torus, the vorticity lines form circles in the x, z-plane), however, the
existence of two characteristic length scales allows us to vary the localized properties
of the disturbance and seek the ‘optimal’ aspect ratio, for which the disturbance
growth is maximal. From (2.1), it can be seen that the vorticity magnitude for the
Gaussian vortex is proportional to:

||ω|| ∼ rs exp
(
−r2

s

/
δ2

)
, (2.5)

whereas for the toroidal disturbance, it is given by:

||ω|| ∼ r exp(−y2/δ2) exp(−(r − ro)
2/δ2). (2.6)

For ro = 0, the distribution of the vorticity magnitude given by (2.6) is reduced to that
of the Gaussian vortex (equation (2.5)), except that rs and r in both expressions refer
to the spherical and radial coordinates, respectively. Thus, the Gaussian disturbance
can be considered as an approximate limit of the toroidal disturbance.
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Figure 1. Iso-surfaces of the vorticity magnitude and the associated vorticity vectors of
horizontal initial disturbances; (a) Gaussian vortex; (b) streamwise elongated disturbance
with L/δ = 2; (c) toroidal disturbance with ro/δ = 2. First row: ||ω||/ωmax = 0.9; Second row:
||ω||/ωmax = 0.1.

Examples of an initially horizontal Gaussian vortex (figure 1a), a streamwise
elongated disturbance having a length scales ratio of L/δ = 2 (figure 1b) and a toroidal
disturbance having a length scales ratio of ro/δ =2 (figure 1c) are presented by iso-
surfaces of the normalized (with respect to its maximum ωmax) vorticity magnitude
for two (high and low) threshold levels. To further clarify the structure of the vorticity
field, the associated vorticity vectors are also shown by the black arrows. For the
Gaussian and the streamwise elongated Gaussian disturbances, a detailed investigation
of the disturbance evolution is presented. For the sake of completeness, only main
results associated with the toroidal disturbance are given (more details concerning
this case can be found in Suponitsky, Cohen & Bar-Yoseph 2004).

2.2. Governing parameters

Once the shape of the initial vortical disturbance is chosen, there are three parameters
that govern the flow. The first one is the strength of the initial disturbance (ε) which
is defined by the amplitude ratio between the maximum vorticity of the disturbance
and the shear of the base flow (Ω), i.e.

ε = ωmax/Ω. (2.7)

As in the present problem statement, a characteristic velocity of the base flow does
not exist, the proper definition of the disturbance amplitude is given in terms of the
vorticity ratio. When the amplitude of the disturbance is small (ε � 1) the problem is
considered to be a ‘linear’ one.

The second governing parameter is the orientation of the initial disturbance relative
to the direction of the base flow. This is given in terms of the angle φ, between the
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direction of the fluid impulse vector p and the positive direction of the x-axis
(figure 1a). For the initially horizontal disturbance, the fluid impulse vector is
p = (0, py, 0) and the corresponding angle is φ = 90◦.

The third governing parameter is the Reynolds number, which for the case of a
Gaussian vortex disturbance is defined as:

Re = Ωδ2/ν. (2.8)

This definition represents the ratio between the time scale associated with the shear of
the base flow (1/Ω) and the viscous time scale (δ2/ν). For the elongated and toroidal
disturbances, the characteristic length scale δ (associated with the thickness of the
vortical region) is also used for the Reynolds number definition, and the disturbance
geometry is defined by the length scales ratios L/δ and ro/δ, respectively.

All variables are made dimensionless using δ and 1/Ω reference length and time
scales, respectively. Accordingly, X = x/δ, Y = y/δ, Z = z/δ and T = tΩ.

2.3. Vortex identification and characteristics

2.3.1. Vortex identification

One of the most natural ways to identify a vortical structure is to use various
threshold levels of the vorticity magnitude iso-surfaces. However, the use of this
method is somewhat subjective as the shape of the vortical structure strongly depends
on the chosen threshold level (e.g. figure 1). Several definitions for vortex identification,
based on the properties of the velocity gradient tensor ∇u, have recently been
proposed. Hunt, Wray & Moin (1988) defined an ‘eddy’ as the region with positive
second invariant, Q, of the velocity gradient tensor, with the additional condition
that the pressure be lower than the ambient value. Chong, Perry & Cantwell (1990)
proposed that a vortex core is a region with complex eigenvalues of ∇u; complex
eigenvalues imply that the local streamline pattern is closed or spiral in a reference
frame moving with the point. Complex eigenvalues will occur when the discriminant
(�) is positive. Jeong & Hussain (1995) defined a vortex core as a connected region
with λ2 < 0, where λ1 � λ2 � λ3 are the eigenvalues of the tensor S2 + Ω̂2 (S and Ω̂

are the symmetric and antisymmetric components of the velocity gradient tensor,
respectively).

In the present study, all of the methods mentioned above were applied to educe
the vortical structure (for details see Suponitsky, Cohen & Bar-Yoseph 2003a). The
results showed that the educed structure (according to the definitions based on the
velocity gradient tensor) were not too sensitive to the chosen threshold levels and
to the particular definition used. In the following, we use the vorticity magnitude
iso-surfaces together with the Q definition for the identification of the vortical
structure.

The purpose of the definitions based on the velocity gradient tensor is to extract
regions of swirling motion. As such, the use of these definitions does not provide any
information regarding the existence of vorticity sheets. These may be of relevance for
understanding better the underlying physics associated with the coherent structures
(see § 3). Finally, it is worth mentioning that regions confined by vorticity magnitude
iso-surfaces as well as regions confined by surfaces based on the velocity gradient
tensor, represent regions of concentrated vorticity and swirling motion, respectively.
The swirl direction within the confined regions is, however, not known. For this,
the corresponding distributions of the vorticity components must be provided as
well.
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2.3.2. Vortex strength

The strength of the vortical disturbance (W ) is measured by integrating the
enstrophy over the entire volume, i.e.

W (t) =

∫
V

||ω(t)||2 dV. (2.9)

The advantages of using the enstrophy integral (W ) are due to its rapid convergence
and its integral character, combining the strength of the vorticity field together with
the disturbance geometrical size.

2.3.3. Vortex centre, velocity and inclination angle

Once the vortical structure is identified, its geometrical characteristics have to be
defined. The first one is the centre of the vortical structure (CVS) which is defined
as the first moment of enstrophy divided by the total enstrophy (analogous to the
definition of ‘centre of gravity’):

Xi(t) =

[∫
V

||ω(t)||2xi dV

]
/W (t). (2.10)

Subsequently, the velocity of the vortical structure can be defined as the velocity of
its centre: ui(t) = dXi/dt .

Another geometrical parameter which is important for the description of the vortex
evolution is the instantaneous inclination angle of the vortical structure relative to
the base flow. Here this angle is defined with the aid of the tensor of enstrophy
distribution (TED), which has been introduced by Shukhman & Levinski (2003). The
TED is defined as follows:

Tij (t) =

∫
V

||ω(t)||2(xi − Xi(t))(xj − Xj (t)) dV, (2.11)

where Xi(t), i = 1, 2, 3 are the coordinates of the CVS defined by (2.10). Since the
TED is a symmetric tensor, its principal axes can be calculated. The largest eigenvalue
corresponds to the principal axis in the vortex plane, along which the vortex is
extended the most. The tensor’s smallest eigenvalue corresponds to the shortest
principal axis. The direction of this axis is perpendicular to the vortex plane. A
schematic drawing of the principal axes, calculated from the TED and the definition
of the inclination angle α is shown in figure 2. For a disturbance, which is symmetric
with respect to the plane Z = 0 (which is the main focus of the present work), the
expression for α is given by (Shukhman & Levinski 2003):

α = 1
2
arctan

(
2T12

T11 − T22

)
+ 1

4
π(1 + s) − 1

2
π, s = sign(T11 − T22). (2.12)

The angle α is used as a measure of the vortical structure inclination angle, whenever
it correlates well with the visual inclination angle.

2.4. Numerical procedure

The commercial CFD code ‘FLUENT’ based on the finite-volume method is used
for the solution of the full Navier–Stokes equations for the primitive variables. The
schematic of the computational domain (for the ‘Gaussian vortex’ disturbance) and
the coordinate system definition is shown in figure 3. Along the streamwise direction
(x) the periodic boundary conditions are employed. The moving-walls boundary



Generation of streaks and hairpin vortices 75

α

X

Y

Localized vorticity region

Long principal axis

Short principal axis

Figure 2. A schematic drawing of the principal axes calculated from the TED.
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Figure 3. Schematic drawing of the computational domain (x-streamwise direction;
y-transverse direction; z-spanwise direction).

conditions are imposed in the walls-normal direction (y). Accordingly, u(y = 20δ) = U0

and u(y = −20δ) = −U0. For the ‘Gaussian vortex’ disturbance, the size of the whole
computational domain is 40δ × 40δ × 30δ along the x, y and z directions, respectively.
The size of the inner region surrounding the disturbance is 20δ × 14δ × 10δ. The whole
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computational domain has about one million grid nodes. For the streamwise elongated
disturbances, the size of the computational domain is extended to 80δ × 30δ × 50δ

and the whole computational domain has about 1.3 million grid nodes. For both
computational grids, the resolution in the region surrounding the vortical structure
is similar, and is equal to 5–6 volume elements per disturbance length scale δ in all
directions. This size of the computational domain is sufficiently large (relative to the
size of the initial disturbance), so that the effect of the finite computational domain
on the disturbance development is negligible. For the spanwise symmetric initial
disturbances (pz =0), the vortical structure remains symmetric around the Z = 0
plane during the entire evolution (see § § 3.1.3 and 3.1.4). Thus, the computations
are carried out on half of the computational domain with the symmetry boundary
condition imposed on the Z =0 plane.

The initial total velocity field, U total, is the sum of two contributions: the uniform
base shear flow (figure 3), and the disturbed velocity field u. The uniform shear
base flow velocity profile (Ubase = (Ωy, 0, 0)) is obtained numerically as a steady-state
solution of the laminar two-dimensional Couette flow with zero pressure gradient.
The initial vortical disturbance is placed at the centre of the computational domain.
Because the initial disturbance is given in terms of its vorticity field, the corresponding
velocity distribution must first be calculated in order to provide the initial velocity
field required for the CFD code. For the particular case in which the disturbance is
described by the function F = F (rs) (equation (2.1)), an analytic velocity distribution
exists (Shukhman & Levinski 2003):

ui = F (rs)

[
pi − xi( p · rs)

r2
s

]
− H (rs)

r3
s

[
pi − 3xi( p · rs)

r2
s

]
, (2.13)

where H (rs) =
∫ rs

0
F (ξ )ξ 2 dξ and ui(0) = 2pi/3.

For the toroidal disturbance (equation (2.4)), the corresponding velocity field is
given by (Batchelor 1967):

u(x, y, z) = − 1

4π

∫
V

s × ω
′

s3
dV

′
, (2.14)

where s = (x − x
′
, y − y

′
, z − z

′
) and s = ||s|| =

√
(x − x

′)2 + (y − y
′)2 + (z − z

′)2.
For most of the simulations, the size of the initial vortical disturbance and the

shear of the base flow are δ = 1 mm and Ω = 40 s−1, respectively. These parameters
are chosen in accordance with the experiments of Malkiel et al. (1999) carried out in
a (water) Taylor–Couette apparatus. For this set of parameters, the relevant Reynolds
number is Re = Ωδ2/ν = 40.

The validation of the results was carried out by comparing our numerical results for
the case of a small amplitude (ε � 1) Gaussian vortex disturbance with the analytic
solution of the three-dimensional linearized vorticity equation which was recently
obtained by Shukhman & Levinski (2003) (see Suponitsky et al. 2004). Tests for the
time and grid resolutions were carried out as well (Suponitsky 2003).

3. Results
3.1. Gaussian vortex disturbance

3.1.1. The effect of the initial disturbance amplitude

In this section, the temporal evolution of a Gaussian vortex disturbance having a
spanwise symmetry (pz = 0 in (2.1)) and a characteristic Reynolds number of Re = 40
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(equation (2.8)) is studied. The base flow field is antisymmetric with respect to the
Y = 0 plane. Therefore, to cover all possible initial orientations of the disturbance,
it is sufficient to vary the angle φ (figure 1a) within the range of 0 <φ � 180◦.
The evolution of initial disturbances having four representative initial orientations
is considered: (i) a horizontal vortex (φ = 90◦, p = (0, |py |, 0)), (ii) a vertical vortex
(φ = 180◦, p = (−|px |, 0, 0)), (iii) a vortex inclined at 45◦ relative to the base flow
(φ = 135◦, p = (−|px |, |py = px |, 0)), and (iv) a vortex inclined at 135◦ relative to the
base flow (φ =45◦, p =(|px |, |py = px |, 0)). The evolutions of linear (ε = 0.015) and
strongly nonlinear (ε =7.5) initial disturbances, corresponding to the above mentioned
initial orientations, are presented in figures 4 and 5, respectively by the iso-surfaces of
the vorticity magnitude. Also presented are the associated vorticity vectors, indicated
by the black arrows.

We can see that at long times (T = 5) the shapes of structures evolving from the
small-amplitude disturbances (figure 4) are almost independent of the disturbance
initial orientation, and consist of a pair of counter-rotating quasi-streamwise vortices.
For the vortical structure evolving from the vertical (φ = 180◦) initial disturbance,
top and bottom vorticity sheets, bridging the pair of quasi-streamwise vortices, can
be also seen. It should be noted that these vorticity sheets are part of the long time
evolving structure. These could have been observed in all other orientations as well, if
a lower threshold level had been used (for more details see Suponitsky et al. 2003a , b).
The evolution of the disturbances having φ = 90◦ and φ = 135◦ initial orientations is
quite similar, both of them quickly evolve (by T = 1) into a pair of counter-rotating
vortices, which later on just stretch out (mainly) along the streamwise direction. For
the initial vertical disturbance (φ = 180◦), it takes a longer time to reach the state of
the resulting structure. During its evolution, it simultaneously undergoes rotation and
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stretching. The evolution of a disturbance, which has an initial orientation of φ =45◦,
is governed mainly by stretching (i.e. the long principal axis does not rotate; instead
the short one is stretched out and becomes the long principal axis).

In the nonlinear case (figure 5), the disturbances having initial orientations of
φ = 90◦, 135◦ and 180◦ evolve into hairpin shape vortices by T = 4. Although there
are some differences in their geometrical shapes, the basic structure of the vortical
structure is the same, consisting of two vortical legs joined together by a relatively
short quasi-spanwise vortex head. The resulting vortical structure developed from a
large-amplitude disturbance having an initial orientation of φ = 45◦, is similar to the
structure evolved from a small-amplitude disturbance (figure 4a at T = 5).

To clarify the evolution process, the projections on the x, y-plane of the iso-surfaces
presented in figures 4 and 5 are shown in figures 6 and 7 for the linear and strongly
nonlinear disturbances, respectively. The long principal axis, calculated from the
tensor of enstrophy distribution (TED), is shown by the black solid line together
with the associated velocity vectors at the Z = 0 plane (the location of maximum
velocity) which are indicated by the black arrows. The corresponding distributions of
the streamwise and vertical velocity components along the long principal axis at the
Z = 0 plane (plotted by solid and dotted lines, respectively), are added underneath
the corresponding vorticity iso-surfaces. It can be seen that the direction of the long
principal axis corresponds well to the visual inclination angle of the vortical structure
for all orientations of the linear initial disturbance (figure 6) and for most orientations,
and in particular the φ =90◦ and φ = 135◦ cases, of the strongly nonlinear (figure 7)
disturbances during the entire evolution.
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Figure 6. Evolution of a small-amplitude (ε = 0.015) disturbance. Odd rows: projection of the
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Figure 6 shows that by T = 1, the extracted vortical structures developed from
the disturbances having φ = 90◦ and φ = 135◦ initial orientations, are very similar.
However, the corresponding directions of their associated induced velocity are
different. At long times (T = 5), the velocity direction along the principal axis is
almost opposite to the streamwise direction independent of the disturbance initial
orientation. Consequently, local vertical shear layers, between the induced negative
streamwise velocity and the base flow, are formed (e.g. see the vorticity sheets in
figure 4d at T = 5). In the nonlinear case, the velocity field induced by the vortical
structure has a significant vertical velocity component also at long times, leading to
the injection of low-speed fluid into the high-velocity region. It is also evident that
the velocity magnitude along the principal axis at long times associated with the
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disturbance having φ =45◦ initial orientation is very weak in comparison with the
disturbances having φ =90◦ or φ = 135◦ initial orientations.

It should be noted that regardless of the initial small-amplitude disturbance
orientation, the distributions of the velocity components along the principal axis
remain symmetric around the origin during the entire evolution. This symmetry is due
to the symmetry properties of both: the chosen initial disturbance and the linearized
governing equations (Shukhman & Levinski 2003). In addition, the following trends
can be observed during the linear disturbance evolution: (i) generation and growth
of a negative streamwise velocity component and attenuation of the vertical velocity
component for the disturbances initially having positive vertical velocity component;
(ii) significant elongation of the disturbed velocity region. These findings suggest that
the disturbance evolution is governed by the transient growth mechanism.
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Figure 8. Top row: vortical structure developed from a small- (ε =0.015) amplitude Gaussian
vortex by T =5.75. Bottom row: vortical structure developed from a large-amplitude (ε = 7.5)
by T = 5. φ = 90◦, Re= 40. (a–c) Contours of ωx , ωy and ωz vorticity components, respectively,
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normalized by the shear of the mean flow Ω = 40 s−1.) The associated vorticity vectors are
shown by the black arrows. (d) Iso-surface according to the Q definition for Q/Qmax = 0.05.

From figure 7, it can be observed that, unlike the linear case (figure 6), the large-
amplitude initial disturbance is shifted away from its initial position (X = Y =0) by its
self-induced motion. Thus, the direction of the initial movement, obviously depends
on the disturbance initial orientation. Another significant difference with respect to
the linear case, is that the distribution of the velocity components along the long
principal axis loses its symmetry from the very beginning. Furthermore, once hairpin
vortices begin to form, the maximum of the velocity magnitude is shifted towards the
head of the hairpins.

In figure 8, the resulting vortical structure developed from a horizontal small- (top
row) and large- (bottom row) amplitude Gaussian vortex is shown by the iso-surfaces
of the vorticity magnitude and the Q definition. The contours of the corresponding
three vorticity components are shown in figures 8(a), 8(b) and 8(c), respectively. The
associated vorticity vectors are indicated in figure 8(a) by the black arrows. It can be
seen that in the case of a small-amplitude disturbance, the top and bottom spanwise
vorticity sheets, bridging the quasi-streamwise vortices, are not captured by the Q

definition (figure 8d), as they do not contain swirling motion. These vorticity sheets
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indicate the existence of local inclined shear layers, which are formed owing to the
negative streamwise velocity induced by the vortical structure. Similar local shear
layers are frequently observed in the near-wall region of a turbulent boundary layer.
For the case of a large-amplitude disturbance, both methods extract similar vortical
structures. With respect to the vorticity field it should be noted that in the linear
case, the elongated regions of concentrated vorticity consist primarily of streamwise
and vertical vorticity components, but the vertical component is the dominant one.
Therefore, the direction of the vorticity vector strongly deviates from the direction of
the vortical structure, and consequently in this case, the vortical structure cannot be
represented as a vortex filament. Unlike the linear case, the vortical legs of the hairpin
vortices contain all three vorticity components, whereas the head of the hairpin is
dominated by the spanwise vorticity component. Consequently, the vorticity lines
spiral around the vortical legs passing through the head of the hairpin. In comparison
with the linear case, the vorticity lines follow much more closely the core of the vortical
structure, resulting in a much stronger swirling motion around the legs and head of
the hairpin. Therefore, in the nonlinear case, the deviation between the direction of
the vorticity vector and the inclination angle of the vortical structure is much less
significant in comparison with the linear case. This deviation was also observed by
Bernard et al. (1993) in their DNS results of channel flow. Kida & Tanaka (1994)
studied the evolution of concentrated vorticity regions in shear flow and reported that
some differences between these two angles existed. For the initial vortical structure
extracted from the DNS channel data by Zhou et al. (1999), the vorticity vector was
inclined by ≈ 50◦ relative to the streamwise direction, whereas the vortical structure
itself was inclined only by ≈ 25◦.

In order to examine carefully the effect of the initial disturbance amplitude on
the evolutionary characteristics of the vortical structures, four initial amplitudes
ε =0.015, 0.375, 3.75 and 7.5 are considered. The disturbances having ε = 0.015 and
0.375 can be regarded as small-amplitude disturbances, i.e. their evolution is governed
by the linearized equations (Suponitsky et al. 2004), whereas disturbances having
ε =3.75 and 7.5 initial amplitudes are considered as strong nonlinear disturbances.
The fact that the evolution of relatively high-amplitude initial disturbances (upto
ε ≈ 0.375), is still governed by the linearized equations is due to the use of the
vorticity ratio (ωmax/Ω) for the definition of the disturbance initial amplitude instead
of the more conventional definition of the corresponding velocity ratio. For the latter
case we have

umax

Ubase

≈ ωmax

Ω

δ

∆
, (3.1)

where δ and ∆ are the characteristic lengths scales of the disturbance and base flow,
respectively. For localized disturbances (in all three dimensions), the characteristic
length scales ratio can be assumed to be very small (Levinski & Cohen 1995).
Consequently, the corresponding amplitude, expressed in terms of the velocities ratio
is very small.

The effect of the initial amplitude on the evolution of the inclination angle α of the
vortical structure for disturbances having initial orientations of φ = 90◦ and φ = 135◦

is presented in figures 9(a) and 9(b), respectively. For both initial orientations, the
temporal evolution of the ‘linear’ disturbances with amplitudes ε = 0.015 and 0.375 is
the same. However, for both cases, larger amplitudes of the initial disturbance result
in larger inclination angles of the vortical structures during the entire evolution.
Finally, examining the results of the horizontal (φ = 90◦) initial disturbance, it can be
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seen that independent of its initial amplitude, the maximum inclination angle of the
vortical structure occurs at T ≈ 1.

The difference between the linear and nonlinear disturbance evolutions is also
evident when the effect of the disturbance initial amplitude on the position of its
centre (CVS, see (2.10)) is considered. In figure 10, the temporal movement of the
CVS for disturbances having φ = 90◦ and φ =135◦ initial orientations and several
amplitudes within the range of 0.015 � ε � 7.5, is presented. The movement of
the x-coordinate (Xc) and y-coordinate (Yc) are shown in figures 10(a) and 10(b),
respectively, whereas the corresponding trajectory is presented in figure 10(c). We
can see that for the small-amplitude case (ε = 0.015), the CVS remains in its initial
position (Xc = Yc = 0) for both orientations of the initial disturbances. This is due
to the symmetry properties of both: the chosen geometry of the initial disturbance
and the linearized equations (Shukhman & Levinski 2003). The movement of the
initial disturbance from its original position is a nonlinear effect caused by the
self-induced velocity of the vortical structure and the destruction of the disturbance
initial streamwise symmetry. The results show that for disturbances with the initial
amplitude of ε = 0.375, only a slight movement of the CVS can be seen, owing to
weak nonlinear effects, whereas for the stronger nonlinear disturbances (ε = 3.75 and
7.5), significant movement of the CVS is observed.
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As the base flow does not have a vertical velocity component, the vertical
displacement of the CVS is due to the vortex self-induced velocity. Once the initial
vortex is displaced in the vertical direction, its streamwise velocity includes the local
streamwise base-flow velocity in addition to its streamwise self-induced velocity.
The nonlinear initial disturbances, initially oriented at φ = 90◦ and φ =135◦, have
a significant positive vertical velocity component, leading to their rapid movement
(which is proportional to their initial amplitude) of the vortical structures in the
vertical direction at early stages of their evolution. Later on (T > 1), the movement
of the CVS in the vertical direction varies approximately linearly with time, implying
that the vertical velocity of CVS is approximately constant. Estimating dXc/dt at
these times, the streamwise velocity of the CVS relative to the local base flow velocity
can be calculated. Its value is found to be within the range of 0.65 � ucvs/Ubase � 0.75.
The defect of the CVS velocity relative to the local streamwise base-velocity (Ubase)
is due to the self-induced velocity, which by these times has a significant opposite
component relative to the base-flow velocity.

In this respect, it is worth mentioning some relevant experimental results: Acarlar &
Smith (1987b) reported that in the outer part of a laminar boundary layer, the
velocity of the artificially generated hairpin’s head is about 0.86 of the free-
stream velocity (the value of the actual local velocity is not given). Smith (1978)
investigated turbulent boundary layers and observed that outer-region disturbances
with convection velocities of 0.60–0.70U∞ seemed to be those most associated with
the lift-up of wall-region fluid. Svizher & Cohen (2002) studied the formation of
hairpin vortices in sub-critical plane Poiseuille flow and reported that the velocity of
the hairpin’s head relative to the local base-velocity is between 0.65 and 0.75. Finally,
examining the trajectory of the centre of the vortical structure (figure 10c), it can
be seen that after some transient time, the trajectories of strongly nonlinear initial
disturbances follow approximately linear curves. The slope of these curves is about
11◦–12◦, independent of the disturbance initial amplitude.

The temporal evolution of the normalized integral of enstrophy for disturbances
having φ =90◦ and φ = 135◦ initial orientations and amplitudes within the range of
0.015 � ε � 7.5 is presented in figures 11(a) and 11(b), respectively. It can be seen
that a significant growth is achieved by the nonlinear initial disturbances (ε = 3.75
and 7.5) having φ = 135◦ initial orientation. The nonlinear disturbances deviate from
the linear ones at T ≈ 4, where they continue to grow at the same rate, achieving
an amplification factor of about 5 by T ≈ 5.5. On the other hand, the growth rate
of the linear disturbances is decreased (due to viscous effects) and they achieved
their maximum amplification (about 3.5) at T ≈ 5.5. A similar deviation, but not as
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Figure 12. The effect of the initial disturbance orientation on the temporal evolution of the
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case).

sharp, can also be observed for disturbances having φ = 90◦ initial orientation, but
at later times. In this respect, it should be recalled that the strength of the vortical
structure developed from a localized disturbance embedded in uniform shear base
flow, is governed by the transient (algebraic for the inviscid case) growth mechanism
(e.g. Ellingsen & Palm 1975; Landahl 1975; Benney & Gustavsson 1981). This growth
is due to the growth of the streamwise disturbance velocity and the elongation of the
vortical structure during the evolution. The term, responsible for the generation and
growth of the streamwise velocity, is v(dU/dy) (the lift-up term), which for positive
normal velocity and dU/dy leads to the generation of a negative streamwise velocity.
As such, the initial orientation of the disturbance, i.e. the initial direction of the
induced velocity relative to the base flow, is expected to have a drastic effect on the
disturbance growth.

In light of the presented results, we wish to find the initial orientation which
yields the maximum transient growth. For this purpose, simulations for two initial
amplitudes ε = 0.375 (referred to as the linear case) and ε = 7.5 (referred to as the
nonlinear case) are carried out, densely covering the whole range of initial orientations
(0 � φ � 180◦).

Figure 12 demonstrates the effect of the disturbance initial orientation on the
temporal evolution of the normalized enstrophy integral. Figure 12(a) shows the
linear case and figure 12(b) the nonlinear case. It can be seen that in both cases
there is a range of initial orientations for which the strength of the vortex decreases
and remains below its initial value during the entire evolution, whereas for all other
orientations it increases. However, the disturbance growth rate depends on its initial
orientation and amplitude. In the linear case (figure 12a), the strength of the vortex
reaches a saturation level at T ≈ 6, independent of the disturbance initial orientation.
The initial orientation yielding the maximum growth of the vortical disturbance varies
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monotonically from φ ≈ 130◦ at T = 1 to φ ≈ 115◦ at T = 7. These results of the linear
case agree very well with the analytic results obtained by Shukhman & Levinski
(2003).

In the nonlinear case, the situation is quite different. There is a range of initial
orientations, for which the integral of enstrophy continues to grow at approximately
the same rate even at relatively long times (T ≈ 6). The initial orientation, for which
the vortex reaches its maximum strength, does not have a clear tendency during the
evolution process. The most amplified disturbances have initial orientation within the
range of 125◦ � φ � 135◦.

Trying to understand the difference between the optimal orientation in the linear
case (φ ≈ 115◦) and nonlinear (φ ≈ 130◦) cases, we now focus on the temporal evolution
of the inclination angle α for the linear (figure 13a) and nonlinear (figure 13b) cases,
respectively. As can be seen in figure 13(b), all disturbances reach a maximum
inclination angle (αmax) by T ≈ 1, before reversing their rotation. Note that the initial
inclination angle for all of the disturbances shown in figure 13 is less than αmax. The
value of αmax is close to 44◦ for the nonlinear case, and it is about 32◦ for the linear
case. Thus, for a given geometry and an initial amplitude, the maximum inclination
angle is approximately constant. The optimal disturbance can now be thought of
as that having an initial inclination angle ‘close’ to αmax. In this case, the energy-
consuming process of rotation is minimal. In this respect it should be mentioned that
the value of αmax =44◦ for the nonlinear case, is within the range of inclination angles
of hairpin vortices observed in turbulent boundary layers by various investigators (e.g.
Head & Bandyopadhyay 1981) and to the predicted value of the model proposed by
Levinski & Cohen (1995).

3.1.2. The effect of the Reynolds number

The effect of the Reynolds number was addressed in Suponitsky et al. (2004),
where the inviscid analytic solution of the linearized vorticity equation (Shukhman &
Levinski 2003) was compared to the analytic and numeric solutions for Re =40. It
was shown that the shape of the vorticity magnitude distribution is well preserved
by the inviscid solution, whereas its actual magnitude is severely overestimated. To
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complete the picture, the simulations for a Gaussian vortex disturbance, with an
initial orientation of φ =135◦, having different initial amplitudes are carried out for
Re = 20 and the results are compared to those of Re = 40.

The results indicate that the Reynolds number has a negligible effect on the
kinematics of the vortical structure. As an example the evolution of the Yc coordinate
of the centre of the vortical structure is shown in figure 14(a), demonstrating slight
differences between the results associated with the two Reynolds numbers. However,
the Reynolds number has a significant effect on the disturbance transient growth as
is shown in figure 14(b).

First, it can be seen that for all initial amplitudes, the transient growth is significantly
increased when the Reynolds number is doubled. For the small-(linear) amplitude
disturbances, the ratio between the maximum strength of the vortical structure
associated with Re = 40 and that of 20 is about 2.25, and the ratio of times by
which these are attained is about 1.5. Both ratios agree well with the theoretical
predictions concerning the linear case (Emax ∼ Re and tmax ∼ Re1/3, see table in the
introduction of Bech et al. 1998).

3.1.3. Asymmetric initial disturbances

All the results presented so far have been confined to initial disturbances possessing
initial spanwise symmetry. It has been shown that the spanwise symmetry for both
small- and large-amplitude disturbances is conserved. In this respect, it is worth
mentioning, that in the model proposed by Levinski & Cohen (1995), the evolution
of a finite-amplitude localized disturbance is described in terms of the fluid impulse
integral p. Accordingly, the spanwise component of the fluid impulse remains equal
to its initial value during the entire evolution. Consequently, if pz(T =0) = 0, the
spanwise symmetry of the vortical structure is conserved.

In real flows, however, the perfect symmetry of the initial disturbance cannot be
expected. Detailed analysis of DNS results (Spalart 1988; Robinson 1991) showed that
the majority of hairpin vortices in the turbulent boundary layer are asymmetric (cane-
and hook-like) hairpin vortices. To demonstrate the effect of the spanwise asymmetry
of the initial disturbance, the evolution of a Gaussian vortex disturbance, initially
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having a non-zero spanwise component of its associated fluid impulse, is considered.
The simulations are carried out for the Gaussian vortex disturbance having an initial
orientation of p = (0, | p| cos 20◦, | p| sin 20◦) (i.e. slightly rotated around the x-axis), for
two initial amplitudes ε =0.375 (small amplitude) and ε = 7.5 (strong nonlinear) and
for Re = 40. The temporal evolutions of the small- and large-amplitude disturbances
are plotted in figure 15. From this figure, it can be seen that the evolution (and
the resulting structure) of a small-amplitude initial disturbance is very similar to
that of a horizontal Gaussian vortex: the initial disturbance rotates about the z-
axis and quickly evolves into two elongated, in the streamwise direction, vortical
regions, which at long times are connected by spanwise vorticity sheets. However,
the evolved vortical structure is not symmetric anymore relative to the Z = 0 plane:
the elongated regions are shifted relative to each other in the streamwise and normal
directions. Nevertheless, the structure remains almost symmetric relative to the origin
(X = Y =Z = 0) owing to the symmetric properties of the linearized equations.

The evolution of the large-amplitude disturbance is also similar to that of the
initially horizontal Gaussian vortex: the initial disturbance rotates about the z-axis
and eventually evolves into a hairpin vortex. However, as a result of the spanwise
asymmetry, the hairpin legs have different lengths and some asymmetries, associated
with its head, can be observed. The movement of the vortical structure owing to its
self-induced velocity in the spanwise direction (in addition to the x and y directions),
can also be observed.

The above results demonstrate that even a slight spanwise asymmetry (20◦) of the
initial disturbances leads to a noticeable asymmetry of the resulting structure. Thus,
the existence of asymmetric hairpins and hook-like vortices in fully turbulent flows
may be explained by ’imperfection’ of the initial disturbances (and/or the base flow).
This point was also addressed in Zhou et al. (1999). Finally, it should be noted, that
in real flows the variation of the base shear in the normal direction enhances the
spanwise asymmetry of the initial disturbance.
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3.2. Streamwise elongated disturbance

3.2.1. The effect of the streamwise disturbance elongation on the evolution
of a small-amplitude initial disturbance

In this section, the effect of the length scales ratio L/δ on the evolution of a
small-amplitude initial disturbance is studied. All other parameters are held constant;
the initial amplitude and orientation are ε = 0.1125 and φ = 90◦, respectively, and
the Reynolds number is 40. The length scales ratio L/δ varies within the range
0 � L/δ � 10. The qualitative evolution of the disturbance and the resulting vortical
structure are found to be sufficiently independent of the length scales ratio L/δ, and
are similar to that of the horizontal Gaussian vortex (figure 4). The disturbance rotates
around the z-axis and finally evolves into two streamwise elongated vortical regions,
inclined at a small angle of α < 10◦. The induced velocity is mainly in the negative
direction of the x-axis, which leads to the formation of a low-speed streaky structure.
This resulting structure remains symmetric around the origin (X = Y =Z = 0) during
the entire evolution owing to the symmetric properties of linearized equations and
convected with the local velocity of the base flow (which is zero in our case).
An example of the resulting structure, for which L/δ = 10, is shown in figure 16
by the projections of the Q-definition iso-surfaces on the (x, y)- and (x, z)-planes,
respectively. The development of the symmetric varicose instability mode (see for
example Asai et al. 2002; Svizher & Cohen 2002; Skote et al. 2002) is evident from
the Q-definition iso-surfaces on the (x, z)-plane for T = 9.

Despite the fact that the streamwise elongation of the initial disturbance has a
relatively small effect on its qualitative evolutionary process, it has a significant effect
on its quantitative characteristics (i.e. its inclination angle and transient growth). The
temporal evolution of the inclination angle α for several disturbances having different
length scales ratio L/δ is shown in figure 17. The maximum inclination angle (of
about 30◦) is attained by the Gaussian vortex at the shortest time (T ≈ 1). When the
ratio L/δ is increased, the time at which the maximum inclination angle is attained
is increased, whereas the value of the angle itself is decreased. For a disturbance
having a length scales ratio of L/δ = 10 (which may be considered approximately as
a ‘streamwise independent’ disturbance), the rate of rotation is very slow, such that
by T =9 the inclination angle is only about 5◦.
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The temporal evolution of the normalized enstrophy integral is shown in figure 18.
It can be seen that the geometry of the initial disturbance plays a very important role
on its transient growth. The Gaussian vortex has the weakest growth, which attains
its maximum (approximately 3.8) by T ≈ 6, and then decays owing to viscous effects.
Increasing the ratio L/δ results in a more significant transient growth which is attained
at longer times. In comparison, the initial enstrophy integral for the disturbance having
a length scales ratio of L/δ = 10, is amplified by a factor of 16 by T = 9 and it still
continues to grow. However, increasing the length scales ratio L/δ from 5 to 10, does
not lead to a significant increase in the corresponding transient growth. It is not a
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surprising result, because as the ratio L/δ is increased, the disturbance approaches
the ‘streamwise independent’ state, for which the contributions of the disturbance
end parts (front and rear) become negligible. This result qualitatively agrees with
the ‘linear’ theoretical predictions, for which the transient growth of a streamwise
independent disturbance is larger than that of a localized disturbance (Bech et al.
1998).

3.2.2. The effect of the initial amplitude

To examine the effect of the ratio L/δ on the evolution of strong initial disturbances,
simulations are carried out for disturbances having an initial amplitude of ε = 7.5 and
several length scales ratios (L/δ =1, 2, 3, 5 and 10). The results (not all presented here)
show, that up to a certain ratio (of about L/δ ≈ 5), the disturbance evolution is similar
to that of a Gaussian vortex, and the resulting structure is that of a single hairpin
vortex. When the ratio L/δ is further increased, a packet of two or more hairpin
vortices is formed. As two examples, the temporal evolution of streamwise elongated
disturbances with L/δ = 5 and 10, are presented in figure 19 by the projections of
the Q-definition iso-surfaces on the (x, y)- and (x, z)-planes, respectively. The initial
disturbance having a length scales ratio of L/δ = 5 is placed at X = 2; Y = −2 in order
to keep the vortex within the computational domain for sufficiently long times.

From figure 19, it is observed that the initial disturbance is convected in the
positive vertical direction owing to its self-induced velocity. The downstream end of
the disturbance is lifted up and its inclination angle increases during the evolution,
forming a hairpin vortex. Another hairpin vortex, having an Ω-shape, is generated
near the upstream end of the initial disturbance. For both length scales ratios, the
resulting vortical structure is similar to the packet or street of hairpin vortices observed
in different shear flows in numerous experimental and numerical studies (Acarlar &
Smith 1987a, b; Zhou et al. 1999; Asai et al. 2002; Skote et al. 2002; A. Svizher,
personal communication 2003).

The results show that for the ‘nearly streamwise independent’ disturbances (large
L/δ ratios), the hairpin vortices are formed near the upstream and downstream
disturbance ends, where the disturbance has a ‘localized’ character. At longer times,
the ‘streamwise independent’ state of the middle part of the disturbance is broken
owing to the influence of these edge-hairpins, leading to a possible formation of other
hairpin vortices. Thus, for the formation of hairpin vortices, it is crucial for the vortex
disturbance to have a localized structure. A further discussion on this issue is given in
§ 4. Finally, it is worth mentioning that, at long times, new quasi-streamwise vortices
(similar to those reported by Acarlar & Smith 1987b; Zhou et al. 1999; Bernard
et al. 1993) are generated below and to the sides of the primary vortical structure.
These vortices are educed (but not shown here) and can be observed by extracting the
vortical structure with a lower threshold level of the Q-definition iso-surfaces. Thus,
although existing, the strength of these vortices is weak relative to the strength of the
primary vortical structure.

3.3. A brief description of the evolution of the toroidal vortex

For the sake of completeness, in the following we briefly describe the evolution of the
toroidal vortex (equation (2.4)). A detailed study can be found in Suponitsky et al.
(2004). The toroidal disturbance is defined by two length scales ro and δ, associated
with the radius and the thickness of the torus, respectively. As the ratio ro/δ is
increased, the distance between the two vorticity maxima (along the z-coordinate)
is increased, whereas the size of the regions having concentrated vorticity remains
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Figure 19. Temporal evolution of the streamwise elongated vortex disturbance with L/δ = 5
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approximately the same (see figure 20). The temporal evolution of the normalized
enstrophy integral is shown in figure 21. It can be seen that increasing the ratio ro/δ

results in a more significant transient growth which is attained at longer times. For
the disturbance with ro/δ = 5–7 the initial enstrophy integral is amplified by a factor
of about 22 by T = 12 and it still continues to grow. However, a further increase of
the length scales ratio ro/δ results in the reduction of the transient growth. Thus,
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the initial disturbances with length scales ratio within the range of ro/δ = 5–7, are
‘optimal’, i.e. they lead to the maximum transient growth. In this range, the separation
distance between the two vorticity maxima (≈ 2ro), expressed in terms of wall units,
lies within the range of 63 � y+ � 88. In this respect, it should be noted that in
turbulent boundary layers, the spanwise spacing between low-speed streaks is about
100 wall units and between hairpin legs is usually about 50–60 wall units and does
not exceed 100.

In order to physically understand the existence of an optimal spanwise
separation distance, we recall that the initial toroidal disturbance resembles a dipole
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configuration. For such dipole configurations, the radius of each leg (≈δ) must be
smaller than the distance between the centres of the two legs (≈2ro). Otherwise,
viscous diffusion can lead to vorticity cancellation and to the elimination of the
vortex. On the other hand, when the spanwise separation distance is too large, the
vortex loses its dipole structure, and consequently, the vortex strength is decreased.

4. Discussion
To further clarify the results and to understand better various aspects associated

with the disturbance evolution, the disturbance vorticity equation (for the uniform
shear base flow) is considered:

∂ω

∂t
=


− (U · ∇)ω︸ ︷︷ ︸

1

− (u · ∇)ω︸ ︷︷ ︸
2


 +


(ω · ∇)U︸ ︷︷ ︸

3

+ (Ω · ∇)u︸ ︷︷ ︸
4

+ (ω · ∇)u︸ ︷︷ ︸
5


 + ν∇2ω︸ ︷︷ ︸

6

, (4.1)

where ω = ∇ × u is the finite-amplitude vorticity disturbance field and Ω = ∇ × U is
the shear of the base flow. Terms (1) and (2) in (4.1) represent the advection of the
disturbance vorticity, without changing the direction of its associated vorticity vector.
Terms (3), (4) and (5) are responsible for the tilting and stretching of the vorticity lines,
and subsequent change of the direction or intensity of the vorticity vector. Term (1) is
a linear term representing the rotation of the vortical structure by the mean shear. For
uniform shear base flow it is equal to −Ωy(∂ωi/∂x). Term (2) is a nonlinear term and
therefore, it has a negligible effect on the evolution of small-amplitude disturbances.
It can be seen that the ‘sign’ and magnitude of term (1) depend on the initial vorticity
distribution (i.e. the shape and orientation of the initial disturbance). For example,
for Gaussian vortex disturbances having φ = 45◦ and φ = 135◦ initial orientations,
the x-derivatives of ωx and ωz vorticity components are identical, but the associated
x-derivatives of ωy have the same magnitude but opposite signs, leading to different
evolutionary processes. For the initially horizontal Gaussian and streamwise elongated
disturbances, the signs of the x-derivatives of the vorticity components are the same,
but the gradients of the vorticity in the streamwise direction are decreased as the length
scales ratio L/δ is increased, leading to slower and weaker rotation of the vortical
structure. For the disturbances with large L/δ length scales ratios, the rotation process
begins near both ends of the disturbance, where the disturbance has a ‘localized
character’ (i.e. localized gradients in the streamwise direction). Thus, as the disturbance
approaches the ‘streamwise independent’ state, its ability to rotate is reduced.

Term (1) is responsible for the convection of the vorticity components (in a similar
manner by which a passive scalar is convected). Each of the vorticity components
is convected by the uniform-shear base flow, such that it seems that the region
of the concentrated vorticity rotates around the z-axis. This point is illustrated in
figure 22 for a Gaussian vortex disturbance having φ = 90◦, Re = 40 and ε =0.375. In
figure 22(a), the projection on the (x, y)-plane of the vorticity magnitude iso-surfaces
is presented. The contours of the vorticity magnitude (figure 22b) and the x, y and
z vorticity components (shown, respectively, in figures 22c–22e) are presented for
the cross-section plane Z = 0.71, the plane where the maximum voticity magnitude
is attained. We can see the deformation of the x-vorticity component (figure 22c)
caused by the first term (term(1)), generation and subsequent deformation of the
y-vorticity component (figure 22d), deformation and attenuation of the z-vorticity
component associated with the initial disturbance (figure 22e up to T = 2), and
subsequent generation of the z-vorticity component, corresponding to the spanwise
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Figure 22. Evolution of a Gaussian vortex disturbance (φ = 90◦, Re =40, ε = 0.375).
(a) Projection on the (x, y)-plane of the vorticity magnitude iso-surface for ||ω||/ωmax = 0.7;
(b) contours of the vorticity magnitude; (c) contours of the x-vorticity component; (d) contours
of the y-vorticity component; (e) contours of the z-vorticity component. Contours (b–e) are
presented at the Z = 0.71 plane, the plane where the maximum voticity magnitude is attained.

vorticity sheets (note the change of signs between T =1 and T =5). The resulting
rotation of the high vorticity region caused by the convective term (1) is shown in
figure 22(a, b).

Figure 23 follows the same structure as that of figure 22 for the streamwise elongated
disturbance having length scales ratio of L/δ =1 and amplitude of ε = 0.1125. This
figure demonstrates that the deformation of the concentrated vorticity region begins
from the upstream and downstream ‘edges’ of the initial disturbance, where the
disturbance has a localized character. At later stages of the evolution (T > 1), the
deformation of the ‘edges’ affects the ‘streamwise independent’ middle part, leading
(again) to the rotation of the entire concentrated vorticity region. Therefore, when
the length of the ‘streamwise independent’ part is increased (i.e. increasing the ratio
L/δ), a longer time is required before the whole disturbance is deformed by the mean
shear, resulting in a slower and a weaker rotation of the concentrated vorticity region.

As was mentioned earlier with regard to (4.1), the direction of the vortical structure
on one hand, and the vorticity vectors on the other, are governed by different terms in
the vorticity equation. Therefore, the correspondence between them is not obvious and
depends on the balance between the different terms. The small-amplitude streamwise-
independent disturbance serves as a good example. In this case, term (1) is equal to
zero and therefore the disturbance does not rotate. However, because term (4) does
not equal zero (as ∂ui/∂z �= 0), the direction of the vorticity vector is changed.

The difference in the resulting geometrical shapes and the dynamics of the
structures, evolved from linear and nonlinear initial disturbances, are due to the
nonlinear terms in the disturbed vorticity equation (terms 2 and 5 in (4.1)). Term (2)
represents the advection of the vorticity by the velocity induced by the disturbance
itself (self-induced velocity). Term (5) represents the conversion from one vorticity
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Figure 23. Evolution of a streamwise elongated disturbance (L/δ = 1, φ = 90◦, Re= 40,
ε = 0.1125). (a) Projection on the (x, y)-plane of the vorticity magnitude iso-surface for
||ω||/ωmax = 0.7; (b) contours of the vorticity magnitude; (c) contours of the x-vorticity
component; (d) contours of the y-vorticity component; (e) contours of the z-vorticity
component. Contours (b–e) are presented at the Z = 0.71 plane, the plane where the maximum
vorticity magnitude is attained.

component to another, or the change of intensity of the vorticity vector by stretching
or contraction of the vorticity lines. As was pointed out by Hunt (2000), the growth
rate of term (5) is relatively slow, as the velocity gradients are decreased owing to
the stretching of the vortical structure. Therefore, the most significant nonlinear effect
(at least at relatively short times) is due to term (2). Our results for the Gaussian
vortex demonstrate this very clearly. Owing to its self-induced motion (term 2),
the disturbance with ε = 0.375 is moved from its initial position and its streamwise
symmetry is broken (in comparison to ε = 0.015). At the same time, the normalized
enstrophy integral is almost identical for both amplitudes, and a significant difference
is only observed (at longer times) for much larger initial-amplitude disturbances.

5. Conclusions
A simple model, which takes into account only the interaction between a localized

vortical disturbance and a laminar uniform shear base flow, is capable of reproducing
the generation process and characteristics of coherent structures (streaks and hairpin
vortices), naturally occurring in fully developed wall-bounded turbulent shear flows.

Streaks and hairpins. The results demonstrate that independent of the initial
disturbance geometry and over a wide range of the initial disturbance orientations,
a small-amplitude vortical disturbance eventually evolves into a pair of streamwise
vortices (and corresponding streaks), whereas, a sufficiently large-amplitude distur-
bance evolves into a hairpin vortex (or a packet of hairpin vortices).

Spanwise spacing. The results (limited, however, to small-amplitude toroidal
disturbances) show that there is an ‘optimal’ range of length scales ratios (ro/δ = 5–7)
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for which the transient growth is the largest. In this ‘optimal’ range, the spanwise
separation between the two elongated vortical regions, expressed in terms of wall units
(60–90), corresponds well to the spanwise spacing of the low-speed streaks observed
in turbulent bounded shear flows.

Inclination angle. For the large-amplitude initial Gaussian vortex, optimal disturbances
are those having an initial inclination angle of about 45◦ (φ ≈ 135◦). This value is
within the range of inclination angles of hairpin vortices observed in turbulent
boundary layers.

Convective velocity. The convective velocity of the vortical structures evolved from
large-amplitude disturbances is found to be between 0.65 � ucvs/Ubase � 0.75, which
is in good agreement with corresponding reported values measured in wall-bounded
turbulent shear flows.

Asymmetric hairpin vortices. The results show that a slight spanwise asymmetry
of the initial vortex disturbance can lead to significant asymmetry of the evolved
hairpin vortex. This result may explain the existence of asymmetric vortical structures
frequently reported in real turbulent flows, unlike the symmetric ones which are
usually observed in sub-critical flows studies.

For the small-amplitude disturbances there is a strong deviation between the
vorticity vector and the direction of the resulting vortical structure. Consequently, in
this ‘linear’ case, the vortical structure cannot be represented as a vortex filament.
This deviation is much less significant in the ‘nonlinear’ case of a large-amplitude
disturbance. In the latter case, the vorticity lines are more collapsed, resulting in a
much stronger swirling motion around the legs and head of the hairpin.

The generation (and development) of hairpin vortices is initiated in regions
where the disturbance possesses a ‘localized’ character (i.e. localized gradients in the
streamwise direction). Accordingly, the generation of a ‘street’ or packet of hairpin
vortices from a streamwise independent initial disturbance, seems unlikely, unless it
is subjected to a secondary instability, or affected by the streamwise edges of the
disturbance.

The Reynolds number has a negligible effect on the kinematics of the vortical
structure (i.e. its CVS position and inclination angle), but has a significant effect on
its transient growth.
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